Spectral-fractional step Runge-Kutta discretizations for initial boundary value problems with time dependent boundary conditions
نویسندگان
چکیده
In this paper we develop a technique for avoiding the order reduction caused by nonconstant boundary conditions in the methods called splitting, alternating direction or, more generally, fractional step methods. Such methods can be viewed as the combination of a semidiscrete in time procedure with a special type of additive Runge–Kutta method, which is called the fractional step Runge–Kutta method, and a standard space discretization which can be of type finite differences, finite elements or spectral methods among others. Spectral methods have been chosen here to complete the analysis of convergence of a totally discrete scheme of this type of improved fractionary steps. The numerical experiences performed also show the increase of accuracy that this technique provides.
منابع مشابه
The Correct Formulation of Intermediate Boundary Conditions for Runge-Kutta Time Integration of Initial Boundary Value Problems
Pseudospectral and high-order finite difference methods are well established for solving time-dependent partial differential equations by the method of lines. The use of highorder spatial discretizations has led in turn to a concomitant interest in high-order time stepping schemes, so that the temporal and spatial errors are of comparable magnitude. Explicit Runge-Kutta methods are widely used ...
متن کاملThe Cfl Condition for Spectral Approximations to Hyperbolic Initial-boundary Value Problems
We study the stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients. Time is discretized by explicit multi-level or Runge-Kutta methods of order < 3 (forward Euler time-differencing is included), and we study spatial discretizations by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials...
متن کاملThe Theoretical Accuracy of Runge-Kutta Time Discretizations for the Initial Boundary Value Problem: A Study of the Boundary Error
The conventional method of imposing time dependent boundary con itioras for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficien...
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملMultigrid Methods for Implicit Runge-Kutta and Boundary Value Method Discretizations of Parabolic PDEs
Sophisticated high order time discretization methods, such as implicit Runge–Kutta and boundary value methods, are often disregarded when solving time dependent partial differential equations, despite several appealing properties. This is mainly because it is considered hard to develop efficient methods for the more complex linear systems involved. We show here that for implicit Runge–Kutta and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2004